2)

AP Test Question

t (hours)	0	Part A - With Calculat					
$L(\mathrm{t})$ (people)	120	156	176	126	150	80	0

2) Concert tickets went on sale at noon $(t=0)$ and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by a twice-differentiable function L for $0 \leq t \leq 9$. Values of $L(t)$ at various times t are shown in the table above.
a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. $(t=5.5)$. Show the computations that lead to your answer. Indicate units of measure. hat lead to your answer. Indicate units of measure. 8 people/hour

t (hours)	0	1	3	4	7	8	9
$L(\mathrm{t})$ (people)	120	156	176	126	150	80	0

c) For $0 \leq t \leq 9$, what is the fewest number of times at which $L^{\prime}(t)$ must equal 0 ? Give a reason for your answer.

t (hours)	0	1	3	4	7	8	9
$L(\mathrm{t})$ (people)	120	156	176	126	150	80	0

b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during the first 4 hours that tickets were on sale. 155 people

t (hours)	0	1	3	4	7	8	9
$L(\mathrm{t})$ (people)	120	156	176	126	150	80	0

d) The rate at which tickets were sold for $0 \leq t \leq 9$ is modeled by $r(t)=550 t e^{\frac{-t}{2}}$ tickets per hour. Based on the model, how many tickets were sold by 3 P.M. $(t=3)$, to the nearest whole number?

